Thursday, December 26, 2019
Convert Frequency to Wavelength Worked Example Problem
  This example problem demonstrates how to find the wavelength of light from the frequency.          Frequency vs Wavelength      The wavelength of light (or other waves) is the distance between subsequent crests, valleys, or other fixed points. The frequency is the number of waves that pass a given point in one second. Frequency and wavelength are related terms used to describe electromagnetic radiation or light. One simple equation is used to convert between them:         frequency x wavelength  speed of light         à » v  c, when à » is wavelength, v is frequency, and c is the speed of light         so         wavelength  speed of light / frequency         frequency  speed of light / wavelength         The higher the frequency, the shorter the wavelength. The usual unit for frequency is Hertz or Hz, which is 1 oscillation per second. Wavelength is reported in units of distance, which often ranges from nanometers to meters. Conversions between frequency and wavelength most often involve wavelength in meters because thats how most people remember the speed of light in a vacuum.           Key Takeaways: Frequency to Wavelength Conversion     Frequency is how many waves pass a defined point per second. Wavelength is the distance between successive peaks or valleys of a wave.Frequency multiplied by wavelength equals the speed of light. So, if you know either the frequency or the wavelength you can calculate the other value.        Frequency To Wavelength Conversion Problem      The Aurora Borealis is a night display in the Northern latitudes caused by ionizing radiation interacting with the Earths magnetic field and the upper atmosphere. The distinctive green color is caused by the interaction of the radiation with oxygen and has a frequency of 5.38 x 1014 Hz. What is the wavelength of this light?Solution:The speed of light, c, is equal to the product of the wavelength, lamda;, and the frequency, à ½.Thereforeà »  c/à ½Ã »  3 x 108 m/sec/(5.38 x 1014 Hz)à »  5.576 x 10-7 m1 nm  10-9 mà »  557.6 nmAnswer:The wavelength of the green light is 5.576 x 10-7 m or 557.6 nm.    
Subscribe to:
Post Comments (Atom)
 
 
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.